
ECHO2CON

Syntax: ECHO2CON

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter sends the data from its standard input to both the standard

output and the standard error device. REDIRECTION of the standard input

and standard output is possible. The standard error device is always the

console.

ECHO2CON is handy when you are troubleshooting a filter sequence. Placing

ECHO2CON inside the sequence allows you to see intermediate results

without disrupting the sequence itself.

Example using ECHO2CON, LOWER, UNIQUE and WORDS

ECHO2CON ERRORLEVELs

Example using ECHO2CON, LOWER, UNIQUE and WORDS:

LOWER < book.txt | WORDS '- | ECHO2CON | SORT | UNIQUE >words.txt

will create WORDS.TXT; a LOWER-case list of all the UNIQUE WORDS contained

in BOOK.TXT. ECHO2CON will display those WORDS before they are SORTed.

ECHO2CON ERRORLEVELs

ERRORLEVELs:

 None.

AFTER

Syntax: AFTER [+n|-n|+0n|-0n][key|ch[ar]] [<prefix>]

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This parse filter only includes the remainder of each line AFTER the KEY

character. The beginning of the line is excluded. The KEY itself is

excluded. The default KEY is groups of spaces and tabs. REDIRECTION of

the input and output is possible.

The sizes of input and output files are unlimited, while the length of

lines is only limited by memory.

+n only includes the remainder AFTER the Nth occurrence of the

KEY, counting forward from the beginning of each line. If the Nth

KEY does not exist, includes the entire line as-is. Default is +1.

-n only includes the remainder AFTER the Nth occurrence of the

KEY, counting backward from the end of each line. If the Nth KEY

does not exist, includes the entire line as-is.

+0n only includes the remainder AFTER the Nth occurrence of the

KEY, counting forward from the beginning of each line. If the Nth

KEY does not exist, the entire line is excluded. N defaults to 1.

-0n only includes the remainder AFTER the Nth occurrence of the

KEY, counting backward from the end of each line. If the Nth KEY

does not exist, the entire line is excluded. N defaults to 1.

KEY is optionally any single, visible, (Graphic black-space)

character. Letters are case-sensitive.

CHAR excludes +N CHARacters counting forward from the beginning or

includes -N CHARacters counting backward from the end of each line,

instead of using a KEY character. Tabs are treated as one

CHARacter. Default is +1.

HINT: If your KEY is a digit, place it before your + or - option on the

command line; e.g. 2+3, not +32, not +3 2, not +3 2. Similarly, the KEY

may be + or -.

PREFIX is an optional string that replaces the excluded portion at

the beginning of each line. BATCH replaceable parameters and the

following escape sequences are supported within the PREFIX:

// /

/nnn any single decimal byte. nnn may range from 0 to 255.

/b Backspace, (BS: /8) does not delete the previous byte.

/f Form-Feed, (FF: /12)

/n liNe-feed, (LF: /13)

/r carriage-Return, (CR: /10)

/s space, (/32)

/t Tab, (HT: /9)

/q " (Quote: /34).

/v | (Vertical tab: /11).

/: % (percent: /37).

/[< (less-than/left angle bracket: /60).

/] > (greater-than/right angle bracket: /62).

/d0 inserts the text BEFORE and including the KEY.

/d1 inserts another copy of the text AFTER the KEY.

/d2 inserts another EoL as found in the standard input.

/d3 inserts as /d0/d1/d2 above.

/# inserts the number of this line.

/& inserts the number of bytes examined.

If / is followed by any other character, it is interpreted according to

SR.

Example using AFTER, BEFORE, LOWER, SINGLES and UNIQUE

Example using AFTER, BEFORE and UNIQUE

Example using AFTER, BEFORE, PREFIX and SUFFIX

Example using AFTER, BEFORE, UNIQUE, UPPER and WORDS

AFTER ERRORLEVELs

Example using AFTER, BEFORE, LOWER, SINGLES and UNIQUE:

BEFORE +3 <p.s|SINGLES :|LOWER|find ":call:"|AFTER -1: |sort|UNIQUE /U

will FIND all CALLs in assembly file P.S, delete their comments (BEFORE

+3), ignore tabs (SINGLES) and differences in case (LOWER), extract the

labels and “CALL” (AFTER -1:), SORT them and display those which are

called only once (UNIQUE /U). This reveals subroutines that could be

integrated into the calling section. It still works if there is neither

space nor tab between "label:" and "call".

AFTER ERRORLEVELs

Errors are per SR ERRORLEVELS.

BEFORE

Syntax: BEFORE [+n|-n|+0n|-0n][key|ch[ar]] [<suffix>]

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This parse filter only includes the beginning of each line BEFORE the KEY

character. The remainder of the line is excluded. The KEY itself is

excluded. The default KEY is groups of spaces and tabs. REDIRECTION of

the input and output is possible.

The sizes of input and output files are unlimited, while the length of

lines is only limited by memory.

+n only includes the beginning BEFORE the Nth occurrence of the

KEY, counting forward from the beginning of each line. If the Nth

KEY does not exist, includes the entire line as-is. Default is +1.

-n only includes the beginning BEFORE the Nth occurrence of the

KEY, counting backward from the end of each line. If the Nth KEY

does not exist, includes the entire line as-is.

+0n only includes the beginning BEFORE the Nth occurrence of the

KEY, counting forward from the beginning of each line. If the Nth

KEY does not exist, the entire line is excluded. N defaults to 1.

-0n only includes the beginning BEFORE the Nth occurrence of the

KEY, counting backward from the end of each line. If the Nth KEY

does not exist, the entire line is excluded. N defaults to 1.

KEY is optionally any single, visible, (Graphic black-space)

character. Letters are case-sensitive.

CHAR includes +N CHARacters counting forward from the beginning or

excludes -N CHARacters counting backward from the end of each line,

instead of using a KEY character. Tabs are treated as one

CHARacter. Default is +1.

HINT: If your KEY is a digit, place it before your + or - option on the

command line; e.g. 2+3, not +32, not +3 2, not +3 2. Similarly, the KEY

may be + or -.

SUFFIX is an optional string that replaces the excluded portion at

the end of each line. BATCH replaceable parameters and the following

escape sequences are supported within the SUFFIX:

// /

/nnn any single decimal byte. nnn may range from 0 to 255.

/b Backspace, (BS: /8) does not delete the previous byte.

/f Form-Feed, (FF: /12)

/n liNe-feed, (LF: /13)

/r carriage-Return, (CR: /10)

/s space, (/32)

/t Tab, (HT: /9)

/q " (Quote: /34).

/v | (Vertical tab: /11).

/: % (percent: /37).

/[< (less-than/left angle bracket: /60).

/] > (greater-than/right angle bracket: /62).

/d0 inserts another copy of the text BEFORE the KEY.

/d1 inserts the text including and AFTER the KEY.

/d2 inserts another EoL as found in the standard input.

/d3 inserts as /d0/d1/d2 above.

/# inserts the number of this line.

/& inserts the number of bytes examined.

If / is followed by any other character, it is interpreted according to

SR.

Example using AFTER, BEFORE, LOWER, SINGLES and UNIQUE

Example using AFTER, BEFORE and UNIQUE

Example using AFTER, BEFORE, PREFIX and SUFFIX

Example using AFTER, BEFORE, UNIQUE, UPPER and WORDS

BEFORE ERRORLEVELs

Example using AFTER, BEFORE and UNIQUE:

DIR /a-d c:\ |AFTER +4 "CALL john " |BEFORE "-1." ".*" |UNIQUE |find ".*"

>tmp.cmd

creates a working COMMAND file called TMP.CMD. TMP.CMD will include a

line for each file in C:\ with an extension, excluding directories. For

the file "C:\setup.log", the resulting line would look like this:

 CALL john setup.*

Executing TMP.CMD requires that JOHN.CMD exists, too. The code of

JOHN.CMD would use %1 to do something with the named file(s).

AFTER

BEFORE

UNIQUE

BEFORE ERRORLEVELs

Errors are per SR ERRORLEVELS.

LOWER

Syntax: LOWER

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter translates every letter to LOWER-case. REDIRECTION of the

input and output is possible.

The sizes of input and output files are unlimited, while the sizes of

words are only limited by memory.

Example using LOWER, UNIQUE and WORDS

Example using ECHO2CON, LOWER, UNIQUE and WORDS

Example using AFTER, BEFORE, LOWER, SINGLES and UNIQUE

Example using LOWER and SINGLES

LOWER ERRORLEVELs

Example using LOWER, UNIQUE and WORDS:

LOWER < book.txt | WORDS '- | sort | UNIQUE /C | sort /R > words.lst

will create and fill WORDS.LST with a LOWER-case list of all the UNIQUE

WORDS contained in BOOK.TXT, including and SORTed according to their

frequencies. Furthermore, the most frequent words will be listed first

and words with equal frequencies will be listed in Reverse alphabetical

order. The list provides a statistical glossary of BOOK.TXT.

LOWER ERRORLEVELs

Errors are per SR ERRORLEVELS.

PREFIX

Syntax: PREFIX <string>

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter prepends STRING to the beginning of each line. The STRING

should be surrounded by double quotes if it includes < |, >. Double

quotes may also be a part of the STRING. REDIRECTION of the input and

output is possible.

The sizes of input and output files are unlimited, while the length of

lines is only limited by memory.

BATCH replaceable parameters and the following escape sequences are also

supported within the STRING:

// /

/nnn any single decimal byte. nnn may range from 0 to 255.

/b Backspace, (BS: /8) does not delete the previous byte.

/f Form-Feed, (FF: /12)

/n liNe-feed, (LF: /13)

/r carriage-Return, (CR: /10)

/s space, (/32)

/t Tab, (HT: /9)

/q " (Quote: /34).

/v | (Vertical tab: /11).

/: % (percent: /37).

/[< (less-than/left angle bracket: /60).

/] > (greater-than/right angle bracket: /62).

/d1 inserts another EoL as found in the standard input.

/# inserts the number of this line.

/& inserts the number of input bytes examined.

If / is followed by any other character, it is interpreted according to

SR.

Example using PREFIX and SUFFIX

Example using AFTER, BEFORE, PREFIX and SUFFIX

PREFIX ERRORLEVELs

Example using PREFIX and SUFFIX:

DIR /a-d/b | PREFIX "MOVE " | SUFFIX " %temp%" > tmp.bat

creates a working BATCH file called TMP.BAT. That file will include a

line for each file found whose archive attribute is set. Directories will

be excluded. With the "TEMP" ENVIRONMENT variable SET to "c:\junk", the

resulting line in TMP.BAT for the file AUTOEXEC.BAT would look like this:

 MOVE AUTOEXEC.BAT C:\JUNK

Executing TMP.BAT would move all files whose archive attribute is set to

C:\JUNK.

PREFIX

SUFFIX

PREFIX ERRORLEVELs

Errors are per SR ERRORLEVELS.

SINGLE

Syntax: SINGLE

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter removes all blank lines. The input's original EoL style is

maintained. REDIRECTION of the input and output is possible.

The sizes of input and output files are unlimited, while the length of

lines is only limited by memory.

Example using SINGLE and SUFFIX

SINGLE ERRORLEVELs

Example using SINGLE and SUFFIX:

SINGLE < abc.txt | SUFFIX /d1 > prn:

Prints ABC.TXT with consistent double-line spacing.

SINGLE

SUFFIX

SINGLE ERRORLEVELs

Errors are per SR ERRORLEVELS.

SINGLES

Syntax: SINGLES [string]

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter reduces sets of one or more spaces or tabs to a single space.

REDIRECTION of the input and output is possible.

The sizes of input and output files are unlimited, while the sizes of

white-spaces are only limited by memory.

STRING is used as the replacement for sets of one or more spaces or

tabs instead of replacing them with one space. STRING may contain

anything, including BATCH replaceable parameters, but some characters

require quotes as follows:

 "<"

 "|"

 "'"

 ">"

 " (tabs) "

 " (spaces) "

Example using AFTER, BEFORE, LOWER, SINGLES and UNIQUE

Example using LOWER and SINGLES

SINGLES ERRORLEVELs

Example using LOWER and SINGLES:

SINGLES <program.asm | LOWER | find " proc "

will reliably FIND all procedures named in assembly file PROGRAM.ASM,

ignoring case, tabs and words like "Proceed" and "Microprocessor",

producing a table of procedures contents.

LOWER

SINGLES

SINGLES ERRORLEVELs

Errors are per SR ERRORLEVELS.

SUFFIX

Syntax: SUFFIX <string>

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter appends STRING to the end of each line. The STRING should be

surrounded by double quotes if it contains spaces, tabs, |, < or >.

Double quotes may still be a part of the STRING. REDIRECTION of the input

and output is possible.

The sizes of input and output files are unlimited, while the length of

lines is only limited by memory.

BATCH replaceable parameters and the following escape sequences are also

supported within the STRING:

// /

/nnn any single decimal byte. nnn may range from 0 to 255.

/b Backspace, (BS: /8) does not delete the previous byte.

/f Form-Feed, (FF: /12)

/n liNe-feed, (LF: /13)

/r carriage-Return, (CR: /10)

/s space, (/32)

/t Tab, (HT: /9)

/q " (Quote: /34).

/v | (Vertical tab: /11).

/: % (percent: /37).

/[< (less-than/left angle bracket: /60).

/] > (greater-than/right angle bracket: /62).

/d1 inserts another EoL as found in the standard input.

/# inserts the number of this line.

/& inserts the number of bytes examined.

If / is followed by any other character, it is interpreted according to

SR.

Example using PREFIX and SUFFIX

Example using SINGLE and SUFFIX

Example using AFTER, BEFORE, PREFIX and SUFFIX

SUFFIX ERRORLEVELs

Example using AFTER, BEFORE, PREFIX and SUFFIX:

DIR b:\/a-d/b/s |AFTER : |BEFORE -1. |PREFIX "CALL john c:" |SUFFIX ".*"

>tmp.cmd

will create a working COMMAND file called TMP.CMD. The COMMAND file will

include a line for each file in all directories of B:\ excluding the

subdirectories themselves. For the file "B:\DOS\COMMAND.COM," the

resulting line would look like this:

 CALL john c:\DOS\COMMAND.*

Executing TMP.CMD requires that JOHN.CMD exists, too. The code of

JOHN.CMD would use %1 to do something with all of the like-named file(s)

with any extension.

AFTER

BEFORE

PREFIX

SUFFIX

SUFFIX ERRORLEVELs

Errors are per SR ERRORLEVELS.

UNIQUE

Syntax: UNIQUE [/u]|[[/d][/g][/c][/r][/l][/n][/b]]

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter omits recurrences of lines. Only UNIQUE lines are included.

If the input has been SORTed, all recurrences are omitted. If the input

has not been SORTed, only contiguous recurrences are omitted, such as

multiple contiguous blank lines. REDIRECTION of the input and output is

possible.

The sizes of input and output files are unlimited, while the length of

lines is only limited by memory.

Option Description Marker Alias

/U only include UniQue lines. Omit all duplicate

lines.

 /Q /1

/D only include DuPlicate lines. Omit all unique

lines.

 /M /P

/G prefix each line with the GrAnd ToTAl of

recurrences.

- /T /A

/C prefix each line with its Count of OCCurrenCes. ; /O

/R prefix each line with its count of RecuRRences. , /@

/L prefix each line with its output Line number. . /#

/N prefix each line with its Input linE NumbEr.

The last recurrence is NumbErEd.

: /I /E

/B prefix each line with the number of BYtes observed. = /& /Y

Slashes, spaces and tabs (/) within options are not required.

Numbers generated by the prefix options above use a fixed size for the

right-justified, space-padded numbers that allows for correct post-

sorting. See SR COUNTERS for details.

The Marker character above will be included following each of the numbers

generated by prefix options above to mark their identity. These Markers

are followed by one tab.

If multiple prefix options are used, those numbers will be generated in

the order shown above.

Example using ECHO2CON, LOWER, UNIQUE and WORDS

Example using AFTER, BEFORE, LOWER, SINGLES and UNIQUE

Example using AFTER, BEFORE and UNIQUE

Example using LOWER, UNIQUE and WORDS

Example 1 using UNIQUE, UPPER and WORDS

Example 2 using UNIQUE, UPPER and WORDS

UNIQUE ERRORLEVELs

Example using UNIQUE, UPPER and WORDS:

UPPER < book.txt | WORDS '- | SORT | UNIQUE /C | SORT /R > words.lst

will create and fill WORDS.LST with a UPPER-case list of all the UNIQUE

WORDS contained in BOOK.TXT, including and SORTed according to their

frequencies. Furthermore, the most frequent words will be listed first

and words with equal frequencies will be listed in Reverse alphabetical

order. The list provides a statistical glossary of BOOK.TXT.

UNIQUE ERRORLEVELs:

 8 Illegal combination of options. /U option ignored.

Otherwise, errors are per SR ERRORLEVELS.

UPPER

Syntax: UPPER

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter translates every letter to UPPER-case. REDIRECTION of the

input and output is possible.

The sizes of input and output files are unlimited, while the sizes of

words are only limited by memory.

Example 1 using UNIQUE, UPPER and WORDS

Example 2 using UNIQUE, UPPER and WORDS

Example using AFTER, BEFORE, UNIQUE, UPPER and WORDS

UPPER ERRORLEVELs

Example using UNIQUE, UPPER and WORDS:

UPPER < book.txt | WORDS ' | SORT | UNIQUE > words.txt

fills WORDS.TXT with an UPPER-case SORTed glossary of all UNIQUE WORDS in

BOOK.TXT.

UNIQUE

UPPER

WORDS

UPPER ERRORLEVELs

Errors are per SR ERRORLEVELS.

WORDS

Syntax: WORDS [<embedded>] [<separator>]

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter separates WORDS such that there is only one word per line. It

does so by converting all sets of white-space and non-alphabetic

characters to a new line. REDIRECTION of the input and output is

possible.

The sizes of input and output files are unlimited, while the sizes of

words plus white-space and non-alphabetic characters are only limited by

memory.

The <EMBEDDED> characters may be included in the words, but words must

still start with a letter. Typical text embedded characters are '-.

Typical technical embedded characters are _0123456789. Additional

characters allowed in DOS 8.3 file names are !~-_0123456789. Additional

characters allowed in long file names are .#$%&'()@^`{}.

It also supports an optional SEPARATOR to replace the default new line

separator. The replacement may have escape sequences as defined in SR for

STRING2.

If this HELP section was filtered by WORDS, the result would start with:

WORDS

embedded

separator

Filter

Bit

executable

file

Copyright

c

Gareth

B

Dolby

This

filter

separates

WORDS

such

that

there

is

only

one

word

per

line

Example using ECHO2CON, LOWER, UNIQUE and WORDS

Example using LOWER, UNIQUE and WORDS

Example 1 using UNIQUE, UPPER and WORDS

Example 2 using UNIQUE, UPPER and WORDS

Example using AFTER, BEFORE, UNIQUE, UPPER and WORDS

WORDS ERRORLEVELs

Example using AFTER, BEFORE, UNIQUE, UPPER and WORDS:

BEFORE ; <a.asm |AFTER +02 |WORDS _0987654321 |UPPER |SORT |UNIQUE

isolates the operands in assembly file A.ASM. It will segregate the

portion that is BEFORE their comments (;) and AFTER 2 tabulations. The

WORDS are extracted, allowing for _0987654321 characters and then

converted to UPPER-case. They are SORTed and only the UNIQUE ones are

shown. The assembler would generate an error message for these operands.

WORDS ERRORLEVELs:

 None.

 Refer to SR ERRORLEVELS if WORDS reports an error.

SR

Syntax: SR string1 [string2] [<in.file.name] [>out.file.name]

(Filter) (32-bit executable file)

Copyright (c) Gareth B. Dolby 1997-2014

This filter performs a global Search-and-Replace operation as word

processors do, replacing bytes (ASCII characters), but from a command

PROMPT on any file type. All portions of the standard input matching

STRING1's pattern are replaced by STRING2 in the standard output. If

STRING2 is null, all portions matching STRING1's pattern are deleted. All

portions not matching STRING1's pattern remain intact, unless the /K

option is used. BATCH replaceable parameters are allowed. REDIRECTION of

the input and output is possible.

The sizes of input and output files are unlimited, while the sizes of

FINDINGS are only limited by memory.

Tabs are not automatically expanded. Control Z and NULL are given no

special meanings. SR does not change anything except what you specify, so

it works on any file type.

The STRINGS on the command line should be enclosed between double quotes

("") if they have any spaces, tabs, >, < or | and while running under

Linux, Unix or CYGWIN.

PERSONAE

FINDINGS

ESCAPE SEQUENCES

EXACTIONS

LITERALS

EoL

WILDCARDS

OPTIONS

HOMED MODE

DIAGNOSTIC MODE

FIND MODE

ITEM

MODIFIERS

DRUDGES

DELIMITERS

REPEATERS of DELIMITED FINDINGS

PARSERS

COMPARISONS 27

COUNTERS

JUMP

SPACES AND TABS

UNDEFINED ESCAPE SEQUENCES .. 30

OPERATION ... 31

SR ERRORLEVELS .. 32

PERSONAE

Note that SR has many other personae that simplify its complex command-

line parameters. These personae perform preprocessing of SR’s command-

line parameters. They are named for what they do:

UNIQUE WORDS SINGLE SINGLES PREFIX

SUFFIX BEFORE AFTER UPPER LOWER

SR.EXE also has an alias, because there are many programs out there by the

same name. You can use SR!.EXE, instead by typing SR! in place of SR.

You may delete SR.EXE from your installed directory to allow your other

SR.EXE to run normally.

FINDINGS: definition

The FINDINGS grow as a portion of the standard input is found to match

STRING1's pattern and are completed when a portion of the standard input

is found to match STRING1’s entire pattern. That matching portion becomes

the FINDINGS.

Example: Positive Replace

Example: Positive Replace

SR "John Kennedy" "Ron Reagan" < letter.txt > PRN:

changes each instance of "John Kennedy" to "Ron Reagan" in LETTER.TXT and

prints it. The FINDINGS are John Kennedy.

ESCAPE SEQUENCE: definition

If a LITERAL is preceded by a slash (/), then it is no longer a LITERAL,

but becomes an ESCAPE SEQUENCE.

ESCAPE SEQUENCES: (STRING1 and STRING2)

STRING1 and STRING2 in the command line may include the ESCAPE SEQUENCES

listed in the following sections in UPPER-CASE or lower-case, except

UNDEFINED ESCAPE SEQUENCES.

EXACTIONS

WILDCARDS

OPTIONS

MODIFIERS

DRUDGES

UNDEFINED ESCAPE SEQUENCES

EXACTION: definition

An EXACTION is an ESCAPE SEQUENCE, described by 2 or more characters, that

represents only one byte.

EXACTIONS

EXACTIONS: (STRING1 and STRING2)

Some ASCII characters are not taken literally, because they edit, delimit,

replace or terminate the command line, or they REDIRECT the command's

inputs and outputs, so SR includes EXACTIONS to represent these ASCII

characters:

EXACTION Result

/b Backspace, (BS: /8) does not delete the previous byte.

/t Tab (/9)

/n liNe-feed (/10)

/v | (Vertical tab: /11)

/f FormFeed (/12)

/r carriage-Return (/13)

/q " (Quote: /34)

/: % (percent: /37)

// / (slash: /47)

/[< (less-than/left angle bracket: /60)

/] > (greater-than/right angle bracket: /62)

/nnn a byte in decimal radix; 0 to 255, e.g. /208

LITERALS: definition

LITERALS are WYSIWYG (what-you-see-is-what-you-get) ASCII characters.

EoL: definition

EoLs (End-of-Lines) are the invisible control character(s) that terminate

lines in text files. Four types of EoLs are supported. You can use SR

and the table of EoL ESCAPE SEQUENCES below to convert from any of 5 EoL

types to another and back.

EoL Operating Systems

"/n" Unix, GNU/Linux, Multics, OSX, FreeBSD, AIX, Xenix, BeOS, Amiga,

RISC.

"/r" Mac OS through version OS-9, Commodore, Acorn BBC, TRS-80, Apple

II.

"/r/n" Windows, DOS, TOPS-10, RT-11, CP/M, MP/M, TOS, OS/2, Symbian,

Palm.

"/n/r" Acorn BBC and RISC spooled text output.

"/30" QNX pre-POSIX implementation, before version 4.

The /30 EoL above is not automatically supported by SR, but the other four

are automatically recognized while EOL-SENSITIVITY is active. By default,

EOL-SENSITIVITY is off, so EoLs are ignored. EOL-SENSITIVITY is activated

if STRING1 includes a HOMED MODE OPTION, a LOCATOR MODIFIER or a LINE

PARSER.

Example: Macintosh EoL conversion

Example: Positive Delete

Example: Macintosh EoL conversion

SR < file.mac > file.unix /R /N

converts all carriage-returns to line-feeds, converting Mac text into Unix

text, making them more compatible with Windows text.

Example: Positive Delete

sr "/n/r" < file.dos > file.txt

deletes all blank lines from the Windows-formatted file FILE.DOS or

deletes all EoLs from Acorn-formatted files and stores it as FILE.TXT.

WILDCARDS: (STRING1 only)

WILDCARDS are the ESCAPE SEQUENCES that test for a member from a group of

possible ASCII characters, or just any byte:

/# any ASCII digit [0-9] {/g & /!/i & /!/m}

/& either ASCII binary digit 0 or 1 (48 | 49)

/* any byte (0-255)

/? any ASCII digit or letter ignoring case {/# | /i}

/a any ASCII character (0-127) {/c | /p}

/c any ASCII Control character (0-31 | 127) {/a & /!/p}

/g any ASCII Graphic (black-space) character (33-126) {/p & /!/s}

/i any ASCII letter Ignoring case {/l | /u}

/l any ASCII Lower case letter [a-z]

/m any ASCII punctuation Mark {/g & /!/?}

/o any ASCII Octal digit [0-7]

/p any ASCII Printable character (32-126) {/a & /!/c}

/s either ASCII Space or tab (32 | 9)

/u any ASCII Upper case letter [A-Z]

/w any ASCII White-space character (9-13 | 32)

/x any ASCII heXadecimal character ignoring case [0-9 | a-f | A-F]

/$ any quantity of ASCII spaces or tabs (32 | 9)

OPTION: definition

An OPTION is an ESCAPE SEQUENCE embedded anywhere within STRING1 or

STRING2, as required, that changes the operating mode of SR for this

duration. Any combination of options may be used.

HOMED MODE

DIAGNOSTIC MODE

FIND MODE

HOMED MODE: (STRING1 only)

/h is an OPTION that Homes all tests to align at the beginning of

lines. It activates EOL-SENSITIVITY. The test-point will be moved

forward to the beginning of the next line automatically, if necessary

before testing for STRING1.

Without /H, SR tests relentlessly. For the command SR "/e/-/@9"

"/o/d/r/n", that relentless testing finds recurrences where the next

line(s) match the remainder of the first line. /H solves this in the

command SR "/H/e/-/@9" "/o/d/r/n".

DIAGNOSTIC MODE: (STRING1 only)

/y is an OPTION saying "Yes, do display all counter values and the

ERRORLEVEL on the console after execution." Below is an example. Your

results will vary.

 SR (Copyright Gareth B. Dolby 10 2013)

 received 80666 bytes,

 transmitted 99076 bytes,

 counted 2630 lines,

 replaced 2630 findings,

 used 128 KB of RAM and returned

 errorlevel 0.

Otherwise, SR remains quiet unless a fatal error occurs.

The ERRORLEVEL will reveal warnings that might otherwise not be displayed.

Decode the meanings of warnings and errors at the end of this document

under ERRORLEVELS.

Example: DIAGNOSTIC MODE

Example: DIAGNOSTIC MODE

SR /y/h/=/-60/*/r/n <book1.doc >PRN:

deletes lines with DOS EoLs and exactly 60 other characters in BOOK1.DOC

and prints the remainder. It also displays counter values and the

ERRORLEVEL on the console (/Y) to help debug the search-and-replace

process.

FIND MODE: (STRING2 only)

/k is an OPTION that Kills all standard output that is not described by

STRING2. Otherwise, SR transmits bytes as-is that fail the tests of

STRING1.

ITEM: definition (STRING1 only)

ITEMS are LITERALS, EXACTIONS, WILDCARDS, DELIMITERS, PARSERS and

COMPARISONS. An ITEM can be expressed with one character, as in “Z”,

or MODIFIED many times, as in "/=/!/+5/-10/\Z".

MODIFIERS: definition (STRING1 only)

MODIFIERS modify the behavior of ITEMS. They may be combined in any order

to modify one ITEM as long as all MODIFIERS precede their ITEM. A slash

is required for each MODIFIER, EXACTION, WILDCARD, DELIMITER, REPEATER,

PARSER and COMPARISON.

OPTIONS cannot be MODIFIED, but since OPTIONS are not ITEMS, MODIFIERS and

OPTIONS ignore each other.

MODIFIERS at the end of STRING1 are ignored.

ALL MODIFIERS

ALL MODIFIERS: (STRING1 only)

/= /_ LOCATES this item, instead of testing for it.

/+[n] MIN: continues for N (decimal) occurrences or more of this ITEM.

/-[n] MAX: continues for N (decimal) occurrences or less of this ITEM.

/! tests for NOT this ITEM.

/\ tests BACKWARD for this ITEM or mirrors this PARSER.

LOCATOR MODIFIERS

MIN and MAX MODIFIERS

NOT MODIFIER

BACKWARD MODIFIER

LOCATOR MODIFIERS:

LOCATE MODIFIERS LOCATE the MIN-MAXth occurrence of their ITEM on the

remainder of this line and position the next test-point while keeping all

bytes prior to their ITEM as a part of the FINDINGS.

LOCATORS preserve those bytes before their ITEM to be repeated, tested,

deleted, etc. Otherwise, SR ignores EoLs and transmits bytes as-is that

fail the tests of STRING1. LOCATORS break this behavior.

The two LOCATORS work the same as each other, except for where they

position the next test-point. /_ stops before its ITEM in the direction

used while /= stops after its ITEM in the direction used (forward or

BACKWARD).

/_ LOCATES the MIN-MAXth ITEM on this line and stops before it.

/= LOCATES the MIN-MAXth ITEM on this line and stops after it.

/_/= /= is ignored if /_ is also used to MODIFY the same ITEM.

LOCATORS fail if the end of this line occurs first or its ITEM is /R or

/N, due to having EOL-SENSITIVITY.

MIN and MAX MODIFIERS: (STRING1 only)

Without MIN or MAX, only 1 ITEM is tested. MIN and MAX modify the

required quantity. MAX sets the maximum required quantity. MIN sets the

minimum required quantity. They will test for or locate an ITEM more than

once and allow for a quantity of 0.

/+[n] is the MIN entry.

/-[n] is the –MAX entry. It is used as a positive number.

The range of MIN is 0 to -MAX. A MIN of 0 prevents failure.

The range of -MAX is MIN to the size of available memory (effectively

infinity).

MIN and MAX Dynamic Defaults

MIN and MAX Dynamic Defaults:

The MIN and MAX MODIFIERS' values have dynamic defaults according to the

following rules:

1) MIN and MAX default to 1 and are then subject to rules 2 through 7
below, so "Z" tests for exactly 1 "Z" byte.

2) If both MIN and MAX values are specified, then nothing defaults, so
"/+3/-7Z" tests for 3 to 7 occurrences of "Z" bytes.

3) If a value for MAX is specified, but MIN is not invoked, then MIN
defaults to MAX, so "/-7Z" tests for exactly 7 occurrences of "Z".

4) If MAX is used without a value, then MAX defaults to the amount of
memory available, so "/-Z" tests for 1 or more occurrences of "Z".

5) If a value for MIN is specified, but MAX is not invoked, then MAX
defaults to the amount of memory available, so "/+3Z" tests for 3 or

more occurrences of "Z".

6) If MIN is used without a value, then MIN defaults to 0, so "/+Z”
tests for 0 to 1 occurrences of "Z" and cannot fail.

7) MIN may not be greater than -MAX. If violated, the last value
specified will be used for both MIN and MAX.

These 7 rules cover 9 situations for the MIN and MAX values, summarized in

the matrix below to search for “Z”. They provide 8 different ways to

MODIFY an ITEM’s search quantity:

STRING1 MAX

MIN (none) /- /-7

Z 1 “Z” 1 to infinity “Z” 7 “Z”

/+Z 0 or 1 “Z” 0 to infinity “Z” 0 to 7 “Z”

/+3Z 3 to infinity “Z” 3 to infinity “Z” 3 to 7 “Z”

Infinity represents the amount of memory available.

/-7/+3Z will pass FINDINGS of ZZZ, ZZZZ, ZZZZZ, ZZZZZZ or ZZZZZZZ.

Note: Large MIN and MAX values influence the amount of memory SR uses.

NOT MODIFIER:

/! is the NOT MODIFIER, which inverts the test result to test for

anything other than this ITEM. It also makes LITERALS and EXACTIONS act

like WILDCARDS. "/!/+2/-8Z" tests for 2 to 8 occurrences of bytes that

are NOT “Z”.

Example: Negative Replace

Example: Negative Replace

SR /+1/!/i /r/n < letter.txt | sort | UNIQUE

displays a SORTED list of the UNIQUE words found in LETTER.TXT, but cannot

recognize words containing punctuation.

BACKWARD MODIFIER:

/\ is the BACKWARD MODIFIER, which tests BACKWARD (left), instead of

forward (right). BACKWARD tests are limited to STRING1's FINDINGS so far,

so do not test BACKWARD until you have first tested forward. Attempts to

test BACKWARD behind the first ITEM of STRING1 will stop.

When combined with MIN and MAX, a BACKWARD test could reach the first

ITEM, again, as in "/\/+0/*", but use "/j" as a short-cut to get to that

first ITEM, instead.

DRUDGES: definition

DRUDGES are ITEMS that do tedious, menial, or unpleasant work. Most

DRUDGES process many bytes, instead of one, so DRUDGES are much faster.

DELIMITERS

REPEATERS

PARSERS

COMPARISONS

COUNTERS

JUMP

SPACES AND TABS

STRING2 DRUDGES

DELIMITERS: (STRING1 only)

/d is a DRUDGE that enumerates locations in the FINDINGS with up to 10

Delimiting markers from 1 to 10. If exceeded, the last DELIMITER in

STRING1 will relocate the tenth DELIMITER to its location.

The start and end of the FINDINGS are already DELIMITED.

BACKWARD MODIFIED DELIMITERS (/\/D) will relocate the last DELIMITER to

this new location. If there were no prior DELIMITERS, one will be

created.

MIN, MAX, NOT and LOCATE MODIFIERS of DELIMITERS are ignored.

REPEATERS of DELIMITED FINDINGS: (STRING2 only)

REPEATERS of DELIMITED FINDINGS: (STRING2 only)

VERBATIM REPEATERS

PROCESSED REPEATERS

VERBATIM REPEATERS: (STRING2 only)

/d[#] is a DRUDGE that REPEATS the DELIMITED FINDINGS from the original

standard input to the standard output. # = 0 to 9. Default # = 0.

The repetition stops at the next DELIMITER:

Use to REPEAT the FINDINGS found...

/d0 before DELIMITER 1 of STRING1

/d1 between DELIMITERS 1 and 2 of STRING1

/d2 between DELIMITERS 2 and 3 of STRING1

/d3 between DELIMITERS 3 and 4 of STRING1

/d4 between DELIMITERS 4 and 5 of STRING1

/d5 between DELIMITERS 5 and 6 of STRING1

/d6 between DELIMITERS 6 and 7 of STRING1

/d7 between DELIMITERS 7 and 8 of STRING1

/d8 between DELIMITERS 8 and 9 of STRING1

/d9 between DELIMITERS 9 and last of STRING1

/d before DELIMITER 1 of STRING1

If STRING1 has fewer than # DELIMITERS (or none), then "/d[#]" will REPEAT

the entire FINDINGS.

If STRING1 has exactly # DELIMITERS, there is no user-defined terminus

DELIMITER, so repetition will stop at the end of the FINDINGS, e.g. if

STRING1 has exactly 5 DELIMITERS, then "/d5" will REPEAT the remainder of

the FINDINGS found after that fifth DELIMITER.

If STRING1 has ten or more DELIMITERS, then that portion of the standard

input found after the tenth DELIMITER cannot be REPEATED alone. The tenth

DELIMITER can only serve as the terminus for "/d9" and "/@9".

If STRING1 has more than ten DELIMITERS, then the tenth DELIMITER will

mark the last of them, such that "/d9" and "/@9" will use that portion of

the standard input found between DELIMITER 9 and the last DELIMITER in

STRING1.

Example: Positive Replace and Repeat

Example: LOCATING bytes

Example: Negative Repeat with Delete

Example: Negative Repeat and Insert using BACKWARD

Example: Positive Replace and Repeat

SR John/d/+1/w/dKennedy Ron/d1Reagan < letter.txt

changes each instance of "John Kennedy" to "Ron Reagan" while preserving

the white-space. "Kennedy" could be indented on the next line after

"John".

Example: LOCATING bytes

dir |SR "/h/=/-41/*/\/-31/*" "/d9/t" |sort

inserts a tab after the tenth byte on each line from the DIR command that

has at least 41 characters and sorts it before it is displayed on the

terminal. Listings from DIR and LS commands can be re-formatted many

ways.

Example: Negative Repeat with Delete

SR /h/=/-9/*/d/!/g /d0 < letter.txt

deletes the tenth byte from each line in LETTER.TXT unless it is graphic

(/!/g) and displays it on the terminal. Shorter lines are not changed.

Example: Negative Repeat and Insert using BACKWARD

SR "/!/-81/r/\/+0/g" "/d9/r/n" <letter.txt

inserts a DOS EoL (/r/n) before the word which occupied the 81st byte

wherever LETTER.TXT continued for 81 bytes without any EoLs and displays

it on the terminal. Words will not be split. This is the operation of

word wrapping to prevent long lines from chopping words onto 2 lines.

PROCESSED REPEATERS: (STRING2 only)

These 3 DRUDGES change the case of letters within the DELIMITED FINDINGS

and then REPEAT those DELIMITED FINDINGS using the same rules as /d[#].

Non-alphabetic bytes are not changed.

/c[#] changes the Case of all letters.

/l[#] changes upper-case letters to Lower-case.

/u[#] changes lower-case letters to Upper-case.

The case is changed in the buffer, so accessing them again will find the

case changes.

Example: Positive Repeat and Insert While Changing Case

Example: Positive Repeat and Insert While Changing Case

DIR /s/b | SR "/i/d:\/d/e" "/L2 on /u0/d3"

displays file names first in lower-case and disks last in upper-case from

the "DIR /S/B" command onto the terminal. "C:\CONFIG.SYS" becomes

"config.sys on C" and "D:\DOS\XCOPY.EXE" becomes "dos\xcopy.exe on D",

etc. Listings from DIR and LS commands can be re-formatted many ways.

PARSERS: definition (STRING1 only)

PARSERS LOCATE a specific pattern, place a DELIMITER there, position the

test-point beyond that pattern and keep all bytes prior to it as part of

the FINDINGS.

PARSERS continue to perform their function, even after the supply of 10

DELIMITERS has been placed. The tenth DELIMITER will point to the last

DELIMITED byte, even if it was the 50
th
 DELIMITER.

Parsing Lines

Parsing Words

Parsing Lines:

/e is a DRUDGE that parses the remainder of this line with EOL-

SENSITIVITY.

Forward tests parse the End of this line, identified by the next EoL. A

DELIMITER is placed at the End of this line, before its EoL. The next

test will be at the beginning of the next line.

BACKWARD tests parse the beginning of this line, identified by the

previous EoL. A DELIMITER is placed at the beginning of this line, after

the previous line's EoL. The next test will be at the end of the previous

line.

The end of the file is not an EoL.

LOCATE MODIFIERS of line parsers are ignored.

Uses: Comparing Entire Lines

Example: Positive Delete using a Homed Line Parser

Example: Adding Prefixes and Suffixes

Example: Adding Odd/Even Prefixes and Suffixes

Example: Positive Insert a Suffix

Example: Positive Delete Blank Lines

Example: Line Swapping

Uses: Comparing Entire Lines

 SR "/h/e/@0"

 or

 SR "/h/e/@"

will compare one entire line against the next, excluding their EoL

byte(s), while

 SR "/h/e/@9"

will include their EoL byte(s), verifying that the lines end identically.

 SR "/h/e/+1/@9"

will compare one entire line against the next line... and the next line,

stopping when one or its EOL differs. Recurrences are counted.

Example: Positive Delete using a Homed Line Parser

sr < input.c "/h/////e" > file.c

deletes all lines that begin with // from INPUT.C and stores the result in

FILE.C. This deletes one type of comment-only lines from C, C#, C++,

Java, etc. source files.

Example: Adding Prefixes and Suffixes

SR <document1.txt >>document2.txt "/e" "PREFIX/d0SUFFIX/d1"

adds "PREFIX" to the beginning and "SUFFIX" to the end of all lines found

in DOCUMENT1.TXT and appends this to the end of DOCUMENT2.TXT.

Example: Adding Odd/Even Prefixes and Suffixes

SR <document1.txt >>document2.txt "/-2/e" "PREFIX/d0/d1SUFFIX/d2"

adds "PREFIX" to the beginning of odd-numbered lines and "SUFFIX" to the

end of even-numbered lines found in DOCUMENT1.TXT and appends this to the

end of DOCUMENT2.TXT.

Example: Positive Insert a Suffix

dir /b | SR /e "CALL process /d9" > tmp.bat

creates TMP.BAT, a working BATCH file which includes a line for each file

found by the DIR /B COMMAND. A possible line might be:

CALL process AUTOEXEC.BAT

Executing TMP.BAT requires that PROCESS.BAT exists, too. The code of

PROCESS.BAT would use %1 to do something with the named file(s).

Example: Positive Delete Blank Lines

SR "/E/D/-/@1" "/D/D1" <any.txt >book.txt

deletes blank lines of any supported EoL type. SR compares EoLs in

ANY.TXT to the next character(s) and omits all recurrences from its

output: BOOK.TXT.

Example: Line Swapping

SR "/-5/e" <document1.txt "/d3/d4/d0/d1/d2/d5"

swaps lines 4 and 5 with lines 1, 2 and 3 in DOCUMENT1.TXT, repeating

every 5 lines. If DOCUMENT1.TXT has 9 lines, only one such swap will

occur.

Parsing Words

/{[set]} is a DRUDGE that parses words.

Words must begin with a letter and may contain any number of letters and

the optional [SET] of ASCII characters enclosed within {}. Words end at

the first character that is not an ASCII letter or member of [SET].

Forward tests parse the beginning of the next word, identified by the next

letter, so they always begin with a letter. A DELIMITER (/d) is placed at

the beginning of the word, separating it from whatever preceded it. The

next test will be after the end of the parsed word.

BACKWARD tests parse the end of the previous word, identified by the

previous letter, so they always end with a letter. A DELIMITER (/d) is

placed at the end of the word, separating it from whatever followed it.

The next test will be at the beginning of the parsed word.

The [SET] may not contain ESCAPE SEQUENCES; only LITERALS. All [SETs] in

all word parsers will be combined.

Uses: Parsing Words

Example: Finding Sentences

Uses: Parsing Words

 SR "/{}" "/d1/r/n"

parses simple words onto each line.

 SR "/{'-}" "/d1/r/n"

parses common words and phrases.

 SR "/{_0123456789}" "/d1/r/n"

parses labels used in programming languages.

 SR "/{_()[]0123456789}" "/d1/r/n"

includes arrays and functions used in programming languages.

Example: Finding Sentences

SR "/{+-`’&/@#$0123456789%() ,;:}" "/k/d1./r/n" <any.type |SR /n/+1/-

2/!../r

displays whole sentences from the same line in FILE ANY.TYPE, containing

common words and phrases, omits everything else, omits tiny sentences,

adds periods and DOS EoLs. EOL-SENSITIVITY is off, so if ANY.TYPE is a

binary file, all its embedded sentences are displayed, while binary junk

is excluded.

Note that the slash within braces is taken literally.

COMPARISONS: (STRING1 only)

/@[#] is a DRUDGE, that compares the next standard input against the

DELIMITED FINDINGS already found @ DELIMITER #, expecting a complete and

perfect recurrence. # = 0 to 9. Default # = 0. You cannot make

COMPARISONS until after you have developed some FINDINGS to compare

against.

Successful COMPARISONS stop at the next DELIMITER (DELIMITER #+1). If

there are no more DELIMITERS, successful COMPARISONS stop at the end of

the original FINDINGS. In both cases, the FINDINGS then grow.

If there has been fewer than # DELIMITERS so far, the COMPARISON will

compare against the entire original FINDINGS. In fact, COMPARISONS

MODIFIED by MIN or MAX often need to compare the entire FINDINGS or begin

at the last DELIMITER.

The MIN and MAX MODIFIER values of COMPARISONS refer to the number of

recurrences, not occurrences nor bytes.

The next test after a successful COMPARISON will be beyond the last

recurrence.

The COMPARISON fails if any of the compared standard input differs from

their respective DELIMITED byte, DELIMITER # refers to the same byte or

DELIMITER # is at or beyond the terminus DELIMITER. The latter of these

failures could occur if you built duplicate or BACKWARD DELIMITERS.

For NOT MODIFIED COMPARISONS; the COMPARISON succeeds and the test fails

if all of the standard input matches their respective DELIMITED bytes. If

any byte does not match, the test passes and the next test will be at the

first compared byte, even if that byte matched.

BACKWARD and LOCATE MODIFIERS of COMPARISONS are ignored.

Uses: Positive Compare Adjacent Letters

Uses: Negative Compare

Example: Positive Delete Partially-Identical Lines

Example: Negative Delete Partially-Differing Lines

Uses: Repeating Compares

Uses: Positive Compare Adjacent Letters

 SR "/u/@0"

 or

 SR "/u/@"

will find any upper-case letter (/U) and then compare the next byte to it.

Uses: Negative Compare

 SR "AB/d/#/dEF/!/@1"

will compare NOT (/!/@1) against the digit found by /# after the first

DELIMITER (/D), failing if it is the same. A FINDING might be “AB6EF7”.

Example: Positive Delete Partially-Identical Lines

SR "/h/=,/d/e/d/=,/@1/@2/j3" <any.csv |more

deletes entire lines in ANY.CSV where the second line matches the first

line beyond their first commas. Lines with no commas are ignored. The

remaining lines are displayed one page at a time. This deletes duplicate

records with different data in the first field, since the second line is

preserved.

Example: Negative Delete Partially-Differing Lines

sr "/h/=,/d/e/=,/!/@1/e" <letter2.csv >letter3.csv

deletes lines in LETTER2.CSV if the two lines differ after their first

commas and stores the remainder in LETTER3.CSV, including lines with no

commas. This deletes pairs of duplicate records with different data in

the second field.

Uses: Repeating Compares

 SR "AB/dCD/d/i/dGH/-5/@2"

will compare against the letter found by /I after the second DELIMITER

(/d), repeatedly, failing upon a mismatch or stopping after the fifth

recurrence. It would find “ABCDeGHeeeee”. Recurrences are counted. This

example would count 5 recurrences.

COUNTERS: (STRING2 only)

Several STRING2 DRUDGES inject numerical values into the standard output.

These values are derived from COUNTERS built into like DRUDGES in STRING1,

or are always active, as shown below:

STRING1 STRING2 Minimum COUNTER

FINDINGS /# 1 Replacements

/{ /{ | /w 1 Words

/@ /@ | /m 1 Recurrences

/@ /o 2 Occurrences (Recurrences+1)

/@ /g 1 Grand Total Recurrences

 /e 0 Lines

 /& 1 Bytes

/# is the Replacements counter, which always counts FINDINGS that have

been Replaced so far.

/{ or /w is the Words counter, which counts all Words parsed so far by

all WORD PARSER DRUDGES (/{set} in STRING1).

/@ or /m is the Recurrences counter, which counts REPLACED recurrences

found in these FINDINGS by all COMPARISON DRUDGES (/@ in STRING1). The

Recurrences counter resets to zero after injection and test failures,

before counting the next FINDINGS. Therefore, it does not count

successful COMPARISONS where another ITEM in STRING1 failed. Furthermore,

recurrences are only counted if the Replacements counter is also

incremented.

/o is the Occurrences (Recurrences+1) counter, which injects one more

than the Recurrences counter does.

/g is the Grand Total Recurrences counter, which counts REPLACED

Recurrences in all FINDINGS observed so far by all COMPARISON DRUDGES (/@

in STRING1). The Grand Total Recurrences is the sum of all Recurrences

counts so far.

/e is the Lines counter, which always counts the EoLs observed so far

up to the end of the current FINDINGS. It never counts the same line

twice. It does not count all EoLs in binary or mixed EoL files.

/& is the Bytes counter, which always counts the bytes observed so far

up to the end of the current FINDINGS. It provides the offset to the next

byte. Its value wraps back to zero upon ignored overflows.

The Minimum column in the table above estimates the lowest injectable

value for a normal, warning-free execution. It is this way because all

COUNTERS are incremented before injection, so they include the current

FINDINGS.

All COUNTER values begin from zero and are written to the standard output

using the same number of ASCII characters with the sortable, decimal

unsigned integer right-justified and space-padded. Include custom

separators to add clarity.

JUMP: (STRING1 only)

/j[#] is a DRUDGE that Jumps to DELIMITER #. # = 0 to 9. Default # = 0.

/j[#] is used to redirect the next test or remove previously-matched bytes

from the FINDINGS.

If there have been fewer than # DELIMITERS so far, /J# will Jump to the

beginning of the FINDINGS, as do /J0 and /J.

All MODIFIERS of JUMPS are ignored.

SPACES AND TABS: (STRING1 only)

Spaces and tabs can look the same. This is solved by the aforementioned

/S WILDCARD. They are also used in groups to indent, but you can't see

how many nor in what order they are. This is solved using "/+1/S", which

is the same as "/-/S". Spaces and tabs are also used as delimiters to

separate and align columns of data for easy reading, but difficult

parsing. This is solved using the /$ WILDCARD DRUDGE.

/$ is a WILDCARD DRUDGE ITEM that tests for groups of one or more

$paces or tabs (32 or 9), just like /+1/S would. The difference is that

/$ ignores MIN and MAX MODIFIERS to reserve them for use with a LOCATE

MODIFIER. This gives /$ the power to LOCATE the nth group of one or more

$paces or tabs on this line.

The next test will begin at the first byte that is not $pace nor tab.

NOT MODIFIED /$ tests will only advance one byte.

Example: Scanning Across Multiple Groups of White Space

Example: Scanning Across Multiple Groups of White Space

SR "/h/=/-3/$/d/e" <table1.tsv "/d1/d2" >>table2.tsv

will delete all text from the beginning of each line in TABLE1.TSV up to

and including the first 3 groups of $paces and tabs and append the

remainder to TABLE2.TSV. This can be used to remove the first 3 tabulated

records from a database.

UNDEFINED ESCAPE SEQUENCES:

Slashes are ignored if the next character is an UNDEFINED ESCAPE SEQUENCE,

as listed in 3 groups below. The character after the slash will be taken

literally.

UNDEFINED ESCAPE SEQUENCES: (STRING1 and STRING2)

UNDEFINED ESCAPE SEQUENCES: (STRING1 only)

UNDEFINED ESCAPE SEQUENCES: (STRING2 only)

UNDEFINED ESCAPE SEQUENCES: (STRING1 and STRING2)

/~ invert.

/^phrase^ parses this line at its Nth occurrence of PHRASE.

/. parses the next sentence, identified by a period (.).

/() parses the next phrase, enclosed inside parentheses (phrase).

/, parses the next comma-separated-value.

/'

/% gets confused with BATCH replaceable parameters.

/< gets confused with redirected standard input.

/> gets confused with redirected standard output.

/| gets confused with piped standard input and output.

/" gets confused with delimiters.

/ gets confused with delimiters.

/;

/ ending STRING1 or STRING2 with just one / is a syntax error.

/n OBSOLETE: Carriage-Return or Line-Feed, now just Line-Feed.

/z OBSOLETE: reset COUNTERS to Zero, now automated.

UNDEFINED ESCAPE SEQUENCES: (STRING1 only)

/e OBSOLETE: imaginary End location, now End-of-line (EoL) parser.

/h OBSOLETE: imaginary Home location, now Homes tests.

/k Keep whole lines in input buffer.

UNDEFINED ESCAPE SEQUENCES: (STRING2 only)

/a /h /i /j

/p /s /x /y

/! /+ /- /\ /? /*

OPERATION:

AND/OR LOGIC of TESTS: (STRING1 only)

GOING BACK

STRING2 DRUDGES

AND/OR LOGIC of TESTS: (STRING1 only)

SR quickly and relentlessly tests for the first ITEM in STRING1. Each

additional ITEM implies a logical AND related to all other ITEMS. Each

WILDCARD implies a logical OR for its ITEM. Use SR once for each logical

OR that cannot be handled by WILDCARDS or NOT.

GOING BACK

Many repercussions arise from using JUMPS and BACKWARD MODIFIERS. These

can cause the FINDINGS to exclude previously-observed bytes. These

backed-over bytes will not be REPLACED. Instead, they will be included in

the next test.

Going back also allows DELIMITERS and PARSERS to build BACKWARD

DELIMITERS. Attempts to REPEAT portions between BACKWARD DELIMITERS

yields nothing. Attempts to COMPARE portions between BACKWARD DELIMITERS

fails.

A DELIMITER beyond the FINDINGS allows you to REPEAT a portion outside the

FINDINGS and test that portion again to REPEAT it twice.

Think of the test-point as stopping between bytes when using DELIMITERS,

PARSERS, JUMPS and BACKWARD tests.

Example: JUMP back, REPEAT and observe again

sr "/y/h/=,/d/e/d/_,/d,/@1/@2/j3" "/d0{/d3}/D1/D2" <A.csv >B.csv

searches for two lines that match perfectly after their first commas

(/@1/@2). It then copies the text from the second line before its first

comma into the first line, after its first comma. The copy is enclosed in

braces {/d3}.

All counters and the ERRORLEVEL are displayed on the terminal (/Y).

The JUMP (/j3) puts the test-point back to the beginning of the second

line so the FINDINGS encompass only the first line. So, the next test

will compare the second and third lines. Without the JUMP, the next test

would compare the third and fourth lines. This also means that the copy

operation of /d3 was legally taken from outside the final FINDINGS.

This can be used to merge similar records with differing first fields.

STRING2 DRUDGES

All DRUDGES in STRING2 (REPEATERS and COUNTERS) share a common resource,

which limits their total quantity to 10.

FIND & SORT

FIND and SORT are two filters that are built into most operating systems.

They are used in many examples herein to demonstrate the use of other

filters. But, they do not work the same in all environments!

SR ERRORLEVELS:

ERRORLEVELS below 256 are added together and are non-fatal warnings.

ERRORLEVELS above 256 are fatal, but some operating systems truncate

ERRORLEVELS to a byte.

0 STRING1 successfully replaced by STRING2.

1 STRING1 not found. Nothing changed.

2 Too many DELIMITERS. DELIMITER 10 = last DELIMITED byte.

4 No standard output transmitted. Everything deleted.

8 Slash ignored.

16 Too many DRUDGES in STRING2.

32 MAX less than MIN in /-n and /+n pair. Used latter.

64 Expected }.

128 Expected a number.

257 Operation not permitted

258 No such file or directory

259 No such process

260 Interrupted system call

261 Input/Output error

262 No such device or address

263 Argument list too long

264 Executable file format error

265 Bad file descriptor

266 No child processes

267 Resource temporarily unavailable

268 Cannot allocate memory / Not enough space

269 Permission denied

270 Bad address

271 Block device required / Unknown error

272 Device or resource busy

273 File exists

274 Invalid cross-device link / Improper link

275 No such device

276 Not a directory

277 Is a directory

278 Invalid argument

279 Too many open files in system

280 Too many open files

281 Inappropriate ioctl for device

282 Text file busy / Unknown error

283 File too large

284 No space left on device

285 Illegal seek

286 Read-only file system

287 Too many links

288 Broken pipe

289 Numerical argument out of domain

290 Number out of range

291 No message of desired type / Unknown error

292 Identifier removed / Resource deadlock avoided

293 Channel number out of range / Unknown error

294 Level 2 not synchronized / File-name too long

295 Level 3 halted / No locks available

296 Level 3 reset / Function not implemented

297 Link number out of range / Directory not empty

298 Protocol driver not attached / Illegal byte sequence!

299 No CSI structure available

300 Level 2 halted

301 Resource deadlock avoided

302 No locks available

303 *Argument list too short

304 *Infinite loop aborted

305 *Findings length exceeded available memory

306 Invalid exchange

307 Invalid request descriptor

308 Exchange full

309 No anode

310 Invalid request code

311 Invalid slot

312 File locking deadlock error

313 Bad font file format

316 Device not a stream

317 No data available

318 Timer expired

319 Out of streams resources

320 Machine is not on the network

321 Package not installed

322 Object is remote

323 Link has been severed

324 Advertise error

325 Srmount error

326 Communication error on send

327 Protocol error

330 Multihop attempted

331 Inode is remote (not really error)

332 RFS specific error

333 Bad message

335 Inappropriate file type or format

336 Name not unique on network

337 File descriptor in bad state

338 Remote address changed

339 Cannot access a needed shared library

340 Accessing a corrupted shared library

341 .lib section in a.out corrupted

342 Attempting to link in too many shared libraries

343 Cannot exec a shared library directly

344 Function not implemented

345 No more files

346 Directory not empty

347 File name too long

348 Too many levels of symbolic links

351 Operation not supported

352 Protocol family not supported

360 Connection reset by peer

361 No buffer space available

362 Address family not supported by protocol

363 Protocol wrong type for socket

364 Socket operation on non-socket

365 Protocol not available

366 Cannot send after transport endpoint shut-down

367 Connection refused

368 Address already in use

369 Software caused connection abort

370 Network is unreachable

371 Network is down

372 Connection timed out

373 Host is down

374 No route to host

375 Operation now in progress

376 Operation already in progress

377 Destination address required

378 Message too long

379 Protocol not supported

380 Socket type not supported

381 Cannot assign requested address

382 Network dropped connection on reset

383 Transport endpoint is already connected

384 Transport endpoint is not connected

385 Too many references: cannot splice

386 Too many processes

387 Too many users

388 Disk quota exceeded

389 Stale NFS file handle

390 Not supported

391 No medium found

392 No such host or network path

393 File-name exists with different case

394 Invalid or incomplete multi-byte or wide character

395 Value too large for defined data type

396 Operation cancelled

397 State not recoverable

398 Previous owner died

399 Streams pipe error

